4.7 Article

Deletion of the gene encoding the islet-specific glucose-6-phosphatase catalytic subunit-related protein autoantigen results in a mild metabolic phenotype

Journal

DIABETOLOGIA
Volume 50, Issue 4, Pages 774-778

Publisher

SPRINGER
DOI: 10.1007/s00125-006-0564-1

Keywords

autoantigen; glucose; glucose-6-phosphatase; insulin; islet; mouse

Funding

  1. NCI NIH HHS [P30 CA68485-06] Funding Source: Medline
  2. NIDDK NIH HHS [P30 DK57516, P60 DK20593-24, DK076027, U24 DK059637, P60 DK20593, DK59637, DK061645, P60 DK020593, DK064877] Funding Source: Medline

Ask authors/readers for more resources

Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP, now known as glucose-6-phosphatase, catalytic, 2 [G6PC2]) has recently been identified as a major autoantigen in mouse and human type 1 diabetes. Strategies designed to suppress expression of the gene encoding G6PC2 might therefore be useful in delaying or preventing the onset of this disease. However, since the function of G6PC2 is unclear, the concern with such an approach is that a change in G6PC2 expression might itself have deleterious consequences. To address this concern and assess the physiological function of G6PC2, we generated G6pc2-null mice and performed a phenotypic analysis focusing principally on energy metabolism. No differences in body weight were observed and no gross anatomical or behavioural changes were evident. In 16-week-old animals, following a 6-h fast, a small but significant decrease in blood glucose was observed in both male (-14%) and female (-11%) G6pc2(-/-) mice, while female G6pc2(-/-) mice also exhibited a 12% decrease in plasma triacylglycerol. Plasma cholesterol, glycerol, insulin and glucagon concentrations were unchanged. These results argue against the possibility of G6PC2 playing a major role in pancreatic islet stimulus secretion coupling or energy homeostasis under physiological conditions imposed by conventional animal housing. This indicates that manipulating the expression of G6PC2 for therapeutic ends may be feasible.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available