4.7 Article

Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden

Journal

ADVANCES IN WATER RESOURCES
Volume 30, Issue 4, Pages 838-850

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.advwatres.2006.07.002

Keywords

constructed wetland; residence time; flow resistance; vegetation; hydraulic model; tracer experiment

Ask authors/readers for more resources

Treatment wetlands play an important role in reducing nutrient content and heavy metals in wastewater and run-off water. The treatment efficiency strongly depends on flow pattern and residence times of the water. Here, we study the impact of different factors on water flow patterns based on a tracer experiment with tritiated water in a 2.6 ha constructed wetland pond. A 2D flow and inert transport model was used to evaluate the relative importance of bottom topography, vegetation distribution, water exchange with stagnant zones and dispersion. Results from computer simulations and independent measurements of friction losses as well as wetland geometry showed that variations in bottom topography, formed by several deep zones, decreased the variance in water residence times to a minor extent. Heterogeneity in vegetation, on the other hand, significantly contributed to the spread in water residence times and explained the multiple peaks observed in the breakthrough curves. Analyses showed that in the Ekeby treatment wetland, basin shape explained about 10% of the variance in the observed residence times, whereas vegetation explained about 60-80%. To explain all variance secondary factors were needed, such as dispersion and water exchange with stagnant zones. These were shown to contribute to the spread of residence times and primarily to the long tail of the observed breakthrough curves. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available