4.6 Article

Direct electrochemical conversion of bilirubin oxidase at carbon nanotube-modified glassy carbon electrodes

Journal

ELECTROCHEMISTRY COMMUNICATIONS
Volume 9, Issue 4, Pages 689-693

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.elecom.2006.10.052

Keywords

enzyme electrode; bilirubin oxidase; multi-walled carbon nanotubes; direct heterogeneous electron transfer; glassy carbon electrode

Ask authors/readers for more resources

We report on direct electron transfer reactions of bilirubin oxidase at multi-walled carbon nanotube (MWCNT) modified glassy carbon electrodes (GCE). The bioelectrocatalytic oxygen reduction was recorded using linear sweep voltammetry (LSV) with BOD in solution, adsorbed and covalently linked to the nanotubes. The MWCNT modification of GC electrodes strongly enhances the oxygen reduction compared to the signals at unmodified GCE. Under anaerobic conditions with a high protein concentration in solution a pair of redox peaks with a formal potential of 450 +/- 15 mV vs Ag/AgCl, 1 M KCl (pH 7.4) was found with cyclic voltammetry. The redox conversion is indicated to be surface-controlled and pH-dependent (54.5 mV/pH). The quasi-reversible redox reaction might be attributed to the trinuclear T2/T3 cluster of BOD. (c) 2006 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available