4.6 Article

Development of a novel, accurate, automated, rapid, high-through put technique suitable for population-based carrier screening for Fragile X syndrome

Journal

GENETICS IN MEDICINE
Volume 9, Issue 4, Pages 199-207

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1097/GIM.0b013e31803d3ac9

Keywords

fragile X syndrome; carrier screening

Ask authors/readers for more resources

Purpose: To develop a high-through put, automated, accurate method suitable for population-based carrier detection of fragile X syndrome. Methods: We developed a new method called capillary Southern analysis that allows automated high-throughput screening for expanded fragile X mental retardation 1 (FMR1) alleles. Initially samples are analyzed by a multiplex polymerase chain reaction that contains an internal control to establish gender. All females heterozygous for two normal alleles are reported as normal without further analysis. All females homozygous at the FMR1 locus (24% of all analysis) are then analyzed by capillary Southern analysis. Theoretically this method can detect expansion as high as 2000 CGG repeats, although in our series the largest nonmosaic FMR1 present was 950 CGG repeats. After assay development, we performed capillary Southern analysis on 995 female and 557 male samples submitted for fragile X syndrome testing by polymerase chain reaction and Southern blot. Results: The polymerase chain reaction/capillary Southern analysis technique identified 100% of six female premutation carriers, seven full mutation carrier females, one premutation male, and five affected males. There was only one discrepancy between analysis by polymerase chain reaction/Southern blot and analysis by polymerase chain reaction/capillary Southern analysis. A single female sample appeared to be heterozygous for a premutation allele by polymerase chain reaction/capillary Southern analysis but was negative by Southern blot. It is possible this patient is a mosaic for the premutation allele, but because samples were deidentified, we were unable to determine whether this was a true false positive. Conclusion: We have developed an automated, high-throughput technique capable of detecting carriers of fragile X syndrome with 100% sensitivity and at least 99.5% specificity. This should allow population-based carrier detection for the most commonly inherited form of mental retardation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available