4.6 Article

Multi-objective optimization of multipass turning processes

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-006-0425-6

Keywords

turning process; multi-objective optimization; real-parameter genetic algorithm; sequential quadratic programming; linear programming; Lagrange multiplier

Ask authors/readers for more resources

In this paper, a methodology is proposed for the multi-objective optimization of a multipass turning process. A real-parameter genetic algorithm (RGA) is used for minimizing the production time, which provides a nearly optimum solution. This solution is taken as the initial guess for a sequential quadratic programming (SQP) code, which further improves the solution. Thereafter, the Pareto-optimal solutions are generated without using the cost data. For any Pareto-optimal solution, the cost of production can be calculated at a higher level for known cost data. An objective method based on the linear programming model is proposed for choosing the best among the Pareto-optimal solutions. The entire methodology is demonstrated with the help of an example. The optimization is carried out with equal depths of cut for roughing passes. A simple numerical method has been suggested for estimating the expected improvement in the optimum solution if an unequal depth of cut strategy would have been employed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available