4.7 Article

Microstructural effects on indentation failure mechanisms in TiN coatings: Finite element simulations

Journal

ACTA MATERIALIA
Volume 55, Issue 7, Pages 2489-2501

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2006.11.043

Keywords

coatings; nanoindentation; finite element analysis; titanium nitride; hardness

Ask authors/readers for more resources

Titanium nitride (TiN) coatings offer improvements in resistance to wear and environmental degradation. TiN films produced by physical vapour deposition tend to exhibit columnar grain structures, with attendant anisotropies in elastic and fracture properties that influence mechanical behaviour during instrumented indentation. However, computational simulations of indentation behaviour to date have treated TiN films as homogeneous and isotropic. In the present study, nanoindentation of TiN coatings on ductile substrates is simulated and resultant deformation and damage mechanisms are predicted. Intergranular sliding that occurs due to the columnar grain structure is incorporated into the model via anisotropic property definitions and nodal coupling. Substrate and coating properties are calibrated by comparison with previously obtained experimental results. Effects of coating thickness, substrate ductility and residual stresses on coating deformation processes and failure mechanisms are established. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available