4.7 Article

Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks

Journal

EMBO REPORTS
Volume 8, Issue 4, Pages 380-387

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.embor.7400911

Keywords

Tel1; checkpoint; DSB; Exo1; MRX

Ask authors/readers for more resources

The main responder to DNA double-strand breaks (DSBs) in mammals is ataxia telangiectasia mutated (ATM), whereas DSB-induced checkpoint activation in budding yeast seems to depend primarily on the ATM and Rad-3-related (ATR) orthologue Mec1. Here, we show that Saccharomyces cerevisiae Tel1, the ATM orthologue, has two functions in checkpoint response to DSBs. First, Tel1 participates, together with the MRX complex, in Mec1-dependent DSB-induced checkpoint activation by increasing the efficiency of single-stranded DNA accumulation at the ends of DSBs, and this checkpoint function can be overcome by overproducing the exonuclease Exo1. Second, Tel1 can activate the checkpoint response to DSBs independently of Mec1, although its signalling activity only becomes apparent when several DSBs are generated. Furthermore, we provide evidence that the kinetics of DSB resection can influence Tel1 activation, indicating that processing of the DSB termini might influence the transition from Tel1/ATM- to Mec1/ATR-dependent checkpoint.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available