4.7 Article

Kinetics of geopolymerization:: Role of Al2O3 and SiO2

Journal

CEMENT AND CONCRETE RESEARCH
Volume 37, Issue 4, Pages 512-518

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cemconres.2007.01.003

Keywords

inorganic polymers; kinetics; microstructure; mechanical properties

Ask authors/readers for more resources

The early-stage reaction kinetics of metakaolin/sodium silicate/sodium hydroxide geopolymer system have been investigated. The setting and early strength development characteristics, and associated mineral and microstructural phase development of mixtures containing varying SiO2/ Al2O3 ratios, cured at 40 degrees C for up to 72 h, were carefully studied. It was observed that setting time of the geopolymer systems was mainly controlled by the alumina content. Essentially, the setting time increased with increasing SiO2/Al2O3 ratio of the initial mixture. Up to a certain limit, the SiO2/Al2O3 ratio was also found to be responsible for observed high-strength gains at later stages. An increase in the Al2O3 content, i.e. for low SiO2/Al2O3 ratio, led to products of low strength, accompanied by microstructures with increased amounts of Na-Al-Si-containing '' massive '' phases (grains). EDAX analyses showed that the SiO2/Al2O3 ratios of geopolymer gel phases were quite similar to those of the starting mixtures, but with an overall lower Na content. Most importantly, this study clearly demonstrates that the properties of resulting geopolymer systems can be drastically affected by minor changes in the available Si and Al concentrations during synthesis. Crown Copyright (c) 2007 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available