4.6 Article

Relativistic coupled-cluster single-double method applied to alkali-metal atoms

Journal

PHYSICAL REVIEW A
Volume 75, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.75.042515

Keywords

-

Ask authors/readers for more resources

A relativistic version of the coupled-cluster single-double (CCSD) method is developed for atoms with a single valence electron. In earlier work, a linearized version of the CCSD method (with extensions to include a dominant class of triple excitations) led to accurate predictions for energies, transition amplitudes, hyperfine constants, and other properties of monovalent atoms. Further progress in high-precision atomic structure calculations for heavy atoms calls for improvement of the linearized coupled-cluster methodology. In the present work, equations for the single and double excitation coefficients of the Dirac-Fock wave function, including all nonlinear coupled-cluster terms that contribute at the single-double level, are worked out. Contributions of the nonlinear terms to energies, electric-dipole matrix elements, and hyperfine constants of low-lying states in alkali-metal atoms from Li to Cs are evaluated and the results are compared with other calculations and with precise experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available