4.3 Article

Inositol-1,4,5-triphosphate receptors mediate activity-induced synaptic Ca2+ signals in muscle fibers and Ca2+ overload in slow-channel syndrome

Journal

CELL CALCIUM
Volume 41, Issue 4, Pages 343-352

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2006.07.007

Keywords

neuromuscular junction; acetylcholine receptor; fura-2

Categories

Funding

  1. NINDS NIH HHS [NS047989, NS033202, NS036809] Funding Source: Medline
  2. PHS HHS [MDA 3817] Funding Source: Medline

Ask authors/readers for more resources

Strict control of calcium entry through excitatory synaptic receptors is important for shaping synaptic responses, gene expression, and cell survival. Disruption of this control may lead to pathological accumulation of Ca2+. The slow-channel congenital myasthenic syndrome (SCS), due to mutations in muscle acetylcholine receptor (AChR), perturbs the kinetics of synaptic currents, leading to post-synaptic Ca2+ accumulation. To understand the regulation of calcium signaling at the neuromuscular junction (NMJ) and the etiology of Ca2+ overload in SCS we studied the role of sarcoplasmic Ca2+ stores in SCS. Using fura-2 loaded dissociated fibers activated with acetylcholine puffs, we confirmed that Ca2+ accumulates around wild type NMJ and discovered that Ca2+ accumulates significantly faster around the NMJ of SCS transgenic dissociated muscle fibers. Additionally, we determined that this process is dependant on the activation, altered kinetics, and movement of Ca2+ ions through the AChR, although, surprisingly, depletion of intracellular stores also prevents the accumulation of this cation around the NMJ. Finally, we concluded that the sarcoplasmic reticulum is the main source of Ca2+ and that inositol-1,4,5-triphosphate receptors (IP3R), and to a lesser degree L-type voltage gated Ca2+ channels, are responsible for the efflux of this cation from intracellular stores. These results suggest that a signaling system mediated by the activation of AChR, Ca2+, and IP3R is responsible for localized Ca2+ signals observed in muscle fibers and the Ca2+ overload observed in SCS. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available