4.7 Article

The significance of the erosion-induced terrestrial carbon sink

Journal

BIOSCIENCE
Volume 57, Issue 4, Pages 337-346

Publisher

OXFORD UNIV PRESS
DOI: 10.1641/B570408

Keywords

crosion deposition; carbon sequestration; soil organic carbon deposition; soil organic carbon stabilization

Categories

Ask authors/readers for more resources

Estimating carbon (C) balance in erosional and depositional landscapes is complicated by the effects of soil redistribution on both net primary productivity (NPP) and decomposition. Recent studies are contradictory as to whether soil erosion does or does not constitute a C sink. Here we clarify the conceptual basis for how erosion can constitute a C sink. Specifically, the criterion for an erosional C sink is that dynamic replacement of eroded C, and reduced decomposition rates in depositional sites, must together more than compensate for erosional losses. This criterion is in fact met in many erosional settings, and thus erosion and deposition can make a net positive contribution to C sequestration. We show that, in a cultivated Mississippi watershed and a coastal California watershed, the magnitude of the erosion-induced C sink is likely to be on the order of 1% of NPP and 16% of eroded C. Although soil erosion has serious environmental impacts, the annual erosion-induced C sink offsets up to 10% of the global fossil fuel emissions of carbon dioxide for 2005.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available