4.5 Article Proceedings Paper

Genetic containment of forest plantations

Journal

TREE GENETICS & GENOMES
Volume 3, Issue 2, Pages 75-100

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11295-006-0067-8

Keywords

Populus; Pinus; Eucalyptus; sterility; confinement; ablation; excision; genetic engineering; genetic modification; forest biotechnology; gene flow; trees; simulation; stability

Ask authors/readers for more resources

Dispersal of pollen, seeds, or vegetative propagules from intensively bred, exotic, or recombinant DNA modified forest plantations may cause detrimental or beneficial ecological impacts on wild or managed ecosystems. Insertion of genes designed to prevent or substantially reduce dispersal could reduce the risk and extent of undesired impacts. Containment measures may also be required by law or marketplace constraints, regardless of risks or benefits. We discuss: (1) the context for when genetic containment or mitigation systems may be needed; (2) technology approaches and mechanisms; (3) the state of knowledge on genes/genomics of sexual reproduction in forest trees; (4) stability of transgene expression during vegetative growth; (5) simulation studies to define the level of containment needed; and (6) needed research to deliver effective containment technologies. We illustrate progress with several examples from our research on recombinant DNA modified poplars. Our simulations show that even partial sterility can provide very substantial reductions in gene flow into wild trees. We conclude that it is impossible to define the most effective containment approaches, nor their reliability, based on current genomic knowledge and technological tools. Additional genomic and technological studies of a wide variety of options are needed. Studies in field environments are essential to provide data relevant to ecological analysis and regulatory decisions and need to be carried out in phylogenetically diverse representatives of the economically most important taxa of forest trees.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available