4.6 Article

A Comparison of Propofol- and Dexmedetomidine-induced Electroencephalogram Dynamics Using Spectral and Coherence Analysis

Journal

ANESTHESIOLOGY
Volume 121, Issue 5, Pages 978-989

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/ALN.0000000000000419

Keywords

-

Categories

Funding

  1. National Institutes of Health, Bethesda, Maryland [DP2-OD006454, DP1-OD003646, TR01-GM104948, T32GM007592]
  2. Foundation of Anesthesia Education and Research, Rochester, Minnesota
  3. Massachusetts General Hospital Faculty Development Award, Boston, Massachusetts
  4. Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts

Ask authors/readers for more resources

Background: Electroencephalogram patterns observed during sedation with dexmedetomidine appear similar to those observed during general anesthesia with propofol. This is evident with the occurrence of slow (0.1 to 1 Hz), delta (1 to 4 Hz), propofol-induced alpha (8 to 12 Hz), and dexmedetomidine-induced spindle (12 to 16 Hz) oscillations. However, these drugs have different molecular mechanisms and behavioral properties and are likely accompanied by distinguishing neural circuit dynamics. Methods: The authors measured 64-channel electroencephalogram under dexmedetomidine (n = 9) and propofol (n = 8) in healthy volunteers, 18 to 36 yr of age. The authors administered dexmedetomidine with a 1-mu g/kg loading bolus over 10 min, followed by a 0.7 mu g kg(-1) h(-1) infusion. For propofol, the authors used a computer-controlled infusion to target the effect-site concentration gradually from 0 to 5 g/ml. Volunteers listened to auditory stimuli and responded by button press to determine unconsciousness. The authors analyzed the electroencephalogram using multitaper spectral and coherence analysis. Results: Dexmedetomidine was characterized by spindles with maximum power and coherence at approximately 13 Hz (mean SD; power, -10.8 +/- 3.6 dB; coherence, 0.8 +/- 0.08), whereas propofol was characterized with frontal alpha oscillations with peak frequency at approximately 11 Hz (power, 1.1 +/- 4.5 dB; coherence, 0.9 +/- 0.05). Notably, slow oscillation power during a general anesthetic state under propofol (power, 13.2 +/- 2.4 dB) was much larger than during sedative states under both propofol (power, -2.5 +/- 3.5 dB) and dexmedetomidine (power, -0.4 +/- 3.1 dB). Conclusion: The results indicate that dexmedetomidine and propofol place patients into different brain states and suggest that propofol enables a deeper state of unconsciousness by inducing large-amplitude slow oscillations that produce prolonged states of neuronal silence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available