4.4 Article Proceedings Paper

Inhibiting PTEN

Journal

BIOCHEMICAL SOCIETY TRANSACTIONS
Volume 35, Issue -, Pages 257-259

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BST0350257

Keywords

diabetes; insulin signalling; phosphatase and tensin homologue deleted on chromosome 10 (PTEN); phosphatidylinositol 3,4,5-trisphosphate; phosphoinositide 3-kinase (PI3K); vanadate

Ask authors/readers for more resources

PTEN (phosphatase and tensin homologue deleted on chromosome 10) is well known as a tumour suppressor. In dephosphorylating the 3-position of the inositol ring of phosphoinositides such as Ptdlns(3,4,5)P3, PTEN's lipid phosphatase activity is an important counteracting mechanism in PI3K (phosphoinositide 3-kinase) signalling. This is essential for cell motility and migration due to the achievement of a Ptdlns(3,4,5)P3/Ptdlns(4,5)P2 gradient that is also involved in metastasis. Furthermore, PTEN's tumour suppressor role is linked to the control of cell-cycle progression and cell proliferation by counteracting Akt (also called protein kinase B) signalling which is Ptdlns(3,4,5)P3-dependent. Akt is upstream of several kinases involved in proliferation and apoptotic signalling which are often found to be deregulated or mutated in tumours. However, Akt is also the key enzyme in insulin signalling regulating glucose uptake and cell growth. Therefore PTEN has recently moved into the spotlight as a drug target in diabetes. This review summarizes studies undertaken on PTEN's role in glucose uptake, insulin resistance, diabetes and its controversial role in GLUT (glucose transporter)-mediated glucose uptake. Currently available techniques for inhibiting PTEN and the suitability of PTEN as a drug target will be discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available