4.7 Article Proceedings Paper

Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry

Journal

ENERGY POLICY
Volume 35, Issue 4, Pages 2320-2335

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.enpol.2006.08.007

Keywords

emission reduction; steel industry; scenario analysis

Ask authors/readers for more resources

The international climate community has begun to assess a range of possible options for strengthening the international climate change effort after 2012. Analysis of the potential for sector-based emissions reduction and relevant mitigation options will provide the necessary background information for the debate. In order to assess the CO2 abatement potential of China's steel industry, a model was developed using LEAP software to generate 3 different CO2 emission scenarios for the industry from 2000 to 2030. The abatement potentials of different scenarios were compared, and their respective feasibilities were assessed according to the cost information. High priority abatement measures were then identified. The results show that the average CO2 abatement per year in the Recent Policy scenario and in the New Policy scenario, compared with the reference scenario, are 51 and 107 million tons, respectively. The corresponding total incremental costs are 9.34 and 80.95 billion dollars. It is concluded that there is great potential for CO2 abatement in China's steel industry. Adjusting the structure of the industry and technological advancement will play an important role in emissions reduction. Successful implementation of current sustainable development policies and measures will result in CO2 abatement at a low cost. However, to achieve higher levels of abatement, the cost will increase dramatically. In the near future, specific energy conservation technologies such as dry coke quenching, exhaust gas and heat recovery equipment will be of great significance. However, taking a long term perspective, emissions reduction will rely more on the adjustment of production processes and the application of more modern large scale plants. Advanced blast furnace technology will inevitably play an important role. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available