4.6 Article

Lamiophlomis rotata, an Orally Available Tibetan Herbal Painkiller, Specifically Reduces Pain Hypersensitivity States through the Activation of Spinal Glucagon-like Peptide-1 Receptors

Journal

ANESTHESIOLOGY
Volume 121, Issue 4, Pages 835-851

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/ALN.0000000000000320

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China (Beijing, China) [81374000]
  2. Ministry of Education of China (Beijing, China) [20110073110062]
  3. Shanghai Jiao Tong University (Shanghai, China)

Ask authors/readers for more resources

Background: Lamiophlomis rotata is an orally available Tibetan herb prescribed for the management of pain, with shanzhiside methylester (SM) and 8-O-acetyl-SM as quality control ingredients. This study aimed to evaluate the antinociceptive properties of L. rotata, determine whether SM and 8-O-acetyl-SM are principle effective ingredients, and explore whether L. rotata produces antinociception through activation of spinal glucagon-like peptide-1 receptors (GLP-1Rs). Methods: Formalin test, neuropathic pain, and bone cancer pain models were used, and the animal sample size was 5 to 6 in each group. Hydrogen peroxide-induced oxidative damage was also assayed. Results: The L. rotata aqueous extract blocked formalin-induced tonic hyperalgesia and peripheral nerve injury-and bone cancer-induced mechanical allodynia by 50 to 80%, with half-effective doses of 130 to 250 mg/kg, close to the human dosage. The herb was not effective in alleviating acute nociceptive pain. A 7-day gavage with L. rotata aqueous extract did not lead to antiallodynic tolerance. Total iridoid glycosides, rather than total flavonoids, were identified by the activity-tracking method as effective ingredients for antihyperalgesia, whereas both SM and 8-O-acetyl-SM were principal components. Further demonstrations using the GLP-1R antagonist and gene silencer against GLP-1R at both the spinal and the cellular levels indicated that L. rotata inhibited pain hyperactivity by activation of spinal GLP-1Rs, and SM and 8-O-acetyl-SM appeared to be orthosteric, reversible, and fully intrinsic agonists of both rat and human GLP-1Rs. Conclusions: Results support the notion that the activation of spinal GLP-1Rs leads to specific antinociception in pain hypersensitivity and further suggest that GLP-1R is a human-validated target molecule for the treatment of chronic pain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available