4.6 Article

Liquid mixing driven motions of floating macroscopic objects

Journal

APPLIED PHYSICS LETTERS
Volume 90, Issue 14, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2719029

Keywords

-

Ask authors/readers for more resources

Dropping miscible and low-density organic solvents into water generates translational and rotational motions of floating objects including oil droplets, polymer half spheres, and model boats. The moving speed of the boat at different loads and the force produced by solvent drops are measured. In contrast to motions driven by surface tension of monolayer, the liquid mixing driven motion can be dynamically steered without restriction and continued provided the supply is maintained and the amount of water is large enough. Such motions are the result of Marangoni instability in binary liquid-liquid systems with intentionally produced concentration gradients behind the floating objects. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available