4.8 Article

Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox

Journal

PHYSICAL REVIEW LETTERS
Volume 98, Issue 14, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.98.140402

Keywords

-

Ask authors/readers for more resources

The concept of steering was introduced by Schrodinger in 1935 as a generalization of the Einstein-Podolsky-Rosen paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original Einstein-Podolsky-Rosen paradox.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available