4.6 Article

Crystal structure of the RNA polymerase domain of the West Nile Virus non-structural protein 5

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 14, Pages 10678-10689

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M607273200

Keywords

-

Ask authors/readers for more resources

Viruses of the family Flaviviridae are important human and animal pathogens. Among them, the Flaviviruses dengue ( DENV) and West Nile ( WNV) cause regular outbreaks with fatal outcomes. The RNA-dependent RNA polymerase ( RdRp) activity of the non-structural protein 5 ( NS5) is a key activity for viral RNA replication. In this study, crystal structures of enzymatically active and inactive WNV RdRp domains were determined at 3.0- and 2.35-angstrom resolution, respectively. The determined structures were shown to be mostly similar to the RdRps of the Flaviviridae members hepatitis C and bovine viral diarrhea virus, although with unique elements characteristic for the WNVRdRp. Using a reverse genetic system, residues involved in putative interactions between the RNA-cap methyltransferase ( MTase) and the RdRp domain of Flavivirus NS5 were identified. This allowed us to propose a model for the structure of the full-length WNV NS5 by in silico docking of the WNV MTase domain ( modeled from our previously determined structure of the DENV MTase domain) onto the RdRp domain. The Flavivirus RdRp domain structure determined here should facilitate both the design of anti-Flavivirus drugs and structure-function studies of the Flavivirus replication complex in which the multifunctional NS5 protein plays a central role.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available