4.8 Article

Diverse population-bursting modes of adapting spiking neurons

Journal

PHYSICAL REVIEW LETTERS
Volume 98, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.98.148101

Keywords

-

Ask authors/readers for more resources

We study the dynamics of a noisy network of spiking neurons with spike-frequency adaptation (SFA), using a mean-field approach, in terms of a two-dimensional Fokker-Planck equation for the membrane potential of the neurons and the calcium concentration gating SFA. The long time scales of SFA allow us to use an adiabatic approximation and to describe the network as an effective nonlinear two-dimensional system. The phase diagram is computed for varying levels of SFA and synaptic coupling. Two different population-bursting regimes emerge, depending on the level of SFA in networks with noisy emission rate, due to the finite number of neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available