4.6 Article

A novel role for the glucocorticoid receptor in the regulation of monocyte chemoattractant protein-1 mRNA stability

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 14, Pages 10146-10152

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M605925200

Keywords

-

Funding

  1. NHLBI NIH HHS [R01 HL77669, P01 HL77789] Funding Source: Medline

Ask authors/readers for more resources

Monocyte chemoattractant protein-1 (MCP-1) plays an important role in attracting monocytes to sites of inflammation and is the dominant mediator of macrophage accumulation in atherosclerotic plaques. We have previously shown that glucocorticoids inhibit the secretion of MCP-1 in arterial smooth muscle cells (SMC) by markedly decreasing MCP-1 mRNA stability. We now report that the destabilization of MCP-1 mRNA is mediated by the glucocorticoid receptor (GR). The GR antagonist, RU486, blocked the effect of the glucocorticoid dexamethasone (Dex) on MCP-1 mRNA stability in SMC culture. Using a previously reported in vitro mRNA gel shift and stability assay, antibodies to the GR blocked the ability of cytoplasmic extracts from Dex-treated SMC to decay MCP-1 mRNA. Recombinant human GR (rhGR) bound in a concentration dependent manner to in vitro transcribed MCP-1 mRNA, whereas other members of the steroid hormone receptor family did not. Binding of GR to MCP-1 mRNA was specific as it was not found to bind other mRNAs. Immunoprecipitation of GR in extracts from Dex-treated SMC followed by real-time reverse transcription-PCR demonstrated that endogenous GR was bound specifically to MCP-1 mRNA. The addition of exogenous rhGR blocked the ability of extracts from Dex-treated SMC to degrade MCP-1 mRNA, suggesting that exogenous rhGR can compete with an endogenous GR-containing degradative complex. These data suggest a novel role for the GR in binding to and facilitating mRNA degradation. These results provide novel insights into GR function and may provide a new approach to attenuate the inflammatory response mediated by MCP-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available