3.9 Article

Large-scale RNAi screens identify novel genes that interact with the C-elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity

Journal

BMC DEVELOPMENTAL BIOLOGY
Volume 7, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-213X-7-30

Keywords

-

Funding

  1. NCI NIH HHS [P01 CA095281, P01 CA95281] Funding Source: Medline

Ask authors/readers for more resources

Background: The retinoblastoma tumor suppressor (Rb) acts in a conserved pathway that is deregulated in most human cancers. Inactivation of the single Rb-related gene in Caenorhabditis elegans, lin-35, has only limited effects on viability and fertility, yet causes changes in cell-fate and cell-cycle regulation when combined with inactivation of specific other genes. For instance, lin-35 Rb is a synthetic multivulva (synMuv) class B gene, which causes a multivulva phenotype when inactivated simultaneously with a class A or C synMuv gene. Results: We used the ORFeome RNAi library to identify genes that interact with C. elegans lin-35 Rb and identified 57 genes that showed synthetic or enhanced RNAi phenotypes in lin-35 mutants as compared to rrf-3 and eri-1 RNAi hypersensitive mutants. Based on characterizations of a deletion allele, the synthetic lin-35 interactor zfp-2 was found to suppress RNAi and to cooperate with lin-35 Rb in somatic gonad development. Interestingly, ten splicing-related genes were found to function similar to lin-35 Rb, as synMuv B genes that prevent inappropriate vulval induction. Partial inactivation of specific spliceosome components revealed further similarities with lin-35 Rb functions in cell-cycle control, transgene expression and restricted expression of germline granules. Conclusion: We identified an extensive series of candidate lin-35 Rb interacting genes and validated zfp-2 as a novel lin-35 synthetic lethal gene. In addition, we observed a novel role for a subset of splicing components in lin-35 Rb-controlled processes. Our data support novel hypotheses about possibilities for anti-cancer therapies and multilevel regulation of gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available