4.5 Article

Cell models for the primary electroviscous effect

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 111, Issue 13, Pages 3370-3378

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp065862m

Keywords

-

Ask authors/readers for more resources

The primary electroviscous effect in a nondilute suspension of charged spherical particles is studied by means of cell models. The governing equations are derived, and then analytic results are obtained by restricting attention to the limit of thin double layers, small Hartmann and Peclet numbers, and small potentials. Previous work has assumed that the velocity at the outer boundary of the cell is identical to the imposed flow, as proposed by Simha (J. Appl. Phys. 1952, 23, 1020). Results with this boundary condition are compared against those predicted when the tangential shear stress on the outer boundary is assumed to be unperturbed, as proposed by Happel (J. Appl. Phys. 1957, 28, 1288). Both the hydrodynamic and electroviscous contributions to the effective viscosity are smaller with the Happel boundary condition, showing that such cell models offer a range of predictions and should be used with caution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available