4.5 Article

Non-linear dynamic instability of a double-sided nano-bridge considering centrifugal force and rarefied gas flow

Journal

INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS
Volume 77, Issue -, Pages 96-106

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijnonlinmec.2015.08.002

Keywords

Nano-bridge; Centrifugal force; Rarefied flow; Dynamic pull-in instability; Strain gradient theory; Dispersion forces

Categories

Ask authors/readers for more resources

Double-sided electromechanical nano-bridges can potentially be used as angular speed sensors and accelerometers in rotary systems such as turbine blades and vacuum pumps. In such applications, the influences of the centrifugal force and rarefied flow should be considered in the analysis. In the present study, the non-linear dynamic pull-in instability of a double-sided nano-bridge is investigated incorporating the effects of angular velocity and rarefied gas damping. The non-linear governing equation of the nanostructure is derived using Euler-beam model and Hamilton's principle including the dispersion forces. The strain gradient elasticity theory is used for modeling the size-dependent behavior of the system. The reduced order method is also implemented to discretize and solve the partial differential equation of motion. The influences of damping, centrifugal force, length scale parameters, van der Waals force and Casimir attraction on the dynamic pull-in voltage are studied. It is found that the dispersion and centrifugal forces decrease the pull-in voltage of a nano-bridge. Dynamic response of the nano-bridge is investigated by plotting time history and phase portrait of the system. The validity of the proposed method is confirmed by comparing the results from the present study with the experimental and numerical results reported in the literature. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available