4.5 Article

Carotenoid radical cations as a probe for the molecular mechanism of nonphotochemical quenching in oxygenic photosynthesis

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 111, Issue 13, Pages 3481-3487

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp066458q

Keywords

-

Ask authors/readers for more resources

Nonphotochemical quenching (NPQ) is a fundamental mechanism in photosynthesis which protects plants against excess excitation energy and is of crucial importance for their survival and fitness. Recently, carotenoid radical cation (Car center dot(+)) formation has been discovered to be a key step for the feedback deexcitation quenching mechanism (qE), a component of NPQ, of which the molecular mechanism and location is still unknown. We have generated and characterized carotenoid radical cations by means of resonant two color, two photon ionization (R2C2PI) spectroscopy. The Car center dot(+) bands have maxima located at 830 nm (violaxanthin), 880 nm (lutein), 900 nm (zeaxanthin), and 920 nm (beta-carotene). The positions of these maxima depend strongly on solution conditions, the number of conjugated C=C bonds, and molecular structure. Furthermore, R2C2PI measurements on the light- harvesting complex of photosystem II (LHC II) samples with or without zeaxanthin (Zea) reveal the violaxanthin (Vio) radical cation (Vio center dot(+)) band at 909 nm and the Zea center dot(+) band at 983 nm. The replacement of Vio by Zea in the light-harvesting complex II (LHC II) has no influence on the Chl excitation lifetime, and by exciting the Chls lowest excited state, no additional rise and decay corresponding to the Car center dot(+) signal observed previously during qE was detected in the spectral range investigated (800-1050 nm). On the basis of our findings, the mechanism of qE involving the simple replacement of Vio with Zea in LHC II needs to be reconsidered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available