4.4 Article

Robustness and evolvability in genetic regulatory networks

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 245, Issue 3, Pages 433-448

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2006.10.027

Keywords

gene regulatory networks; robustness; evolvability; gene divergence; gene duplication

Ask authors/readers for more resources

Living organisms are robust to a great variety of genetic changes. Gene regulation networks and metabolic pathways self-organize and reaccommodate to make the organism perform with stability and reliability under many point mutations, gene duplications and gene deletions. At the same time, living organisms are evolvable, which means that these kind of genetic perturbations can eventually make the organism acquire new functions and adapt to new environments. It is still an open problem to determine how robustness and evolvability blend together at the genetic level to produce stable organisms that yet can change and evolve. Here we address this problem by studying the robustness and evolvability of the attractor landscape of genetic regulatory network models under the process of gene duplication followed by divergence. We show that an intrinsic property of this kind of networks is that, after the divergence of the parent and duplicate genes, with a high probability the previous phenotypes, encoded in the attractor landscape of the network, are preserved and new ones might appear. The above is true in a variety of network topologies and even for the case of extreme divergence in which the duplicate gene bears almost no relation with its parent. Our results indicate that networks operating close to the so-called critical regime exhibit the maximum robustness and evolvability simultaneously. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available