4.7 Article

The inability of Blyssochlamys fulva to produce patulin is related to absence of 6-methylsalicylic acid synthase and isoepoxydon dehydrogenase genes

Journal

INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY
Volume 115, Issue 2, Pages 131-139

Publisher

ELSEVIER
DOI: 10.1016/j.ijfoodmicro.2006.10.016

Keywords

Byssochlamys nivea; Byssochlamys fulva; patulin production; 6-methylsalicylic acid; polyketide synthase; isoepoxydon dehydrogenase

Ask authors/readers for more resources

Byssochlamys species are responsible for spoilage and degradation of fruits and silages. Under specific conditions they are able to produce mycotoxins. The aim of this study was to evaluate the potential of 19 different strains of Byssochlamys nivea and Byssochlamys fulva to produce patulin in relation with the presence of two genes involved in the patulin biosynthesis pathways in the genome of these fungal strains. The strains were characterized by macroscopic, microscopic examinations, internal transcribed spacer (ITS) rRNA and beta-tubulin fragment amplification and sequencing. All of the 8 B. nivea strains tested produced patulin. By contrast, none of the 11 strains of B. fulva produce this toxin. Two genes of the patulin biosynthetic pathway, a polyketide synthase (pks) and the isoepoxydon dehydrogenase (idh) were cloned from B. nivea. The deduced amino acid sequence of the polyketide synthase was 74% identical to the 6-methylsalicylic acid synthase gene of Penicillium griseofulvum and had the five functional domains characteristic of fungal type I polyketide synthases (beta-ketosynthase, acyltransferase, dehydratase, beta-ketoreductase and acyl carrier protein). The complete coding sequence of idh gene displayed after translation 88% of identity with P. griseofulvum IDH and 85% with P. expansum IDH, respectively. Both pks and idh messengers were strongly co-expressed during the production of 6-methylsalicylic acid and patulin. The presence of these genes was then investigated in the genome of B, nivea and B. fiulva strains by PCR. All B. nivea strains possess the two genes, by contrast none of the B. fulva strains display these genes. The absence of 6-methylsalicylic acid and isoepoxydon dehydrogenase genes can explain the inability of B. fulva to produce patulin. In conclusion, B. fulva don't seem to be responsible for the occurrence of patulin by lack of genes. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available