4.5 Article

Cellular and subcellular localization of Huntington aggregates in the brain of a rat transgenic for Huntington disease

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 501, Issue 5, Pages 716-730

Publisher

WILEY
DOI: 10.1002/cne.21272

Keywords

neurodegeneration; olfactory tubercle; ventral striatopallidal system; extended amygdala; EM48; electron microscopy

Ask authors/readers for more resources

Huntington disease (HD) is a progressive neurodegenerative disorder characterized by emotional, cognitive, and motor dysfunctions. Aggregation of huntingtin is a hallmark of HD and, therefore, a crucial parameter for the evaluation of HD animal models. We investigated here the regional, cellular, and subcellular distribution of N-terminal huntingtin aggregates and associated neuropathological changes in the forebrain of a rat transgenic for HD (tgHD). The tgHD rat brain showed enormously enlarged lateral ventricles and a similar atrophy of cortical and subcortical areas as known in HD patients. Huntingtin aggregates of varying size and forms were regionally identified in neuronal nuclei, cytoplasm, dendrites, dendritic spines, axons, and synaptic terminals, closely resembling the results described earlier for human HD brains and in established HD mouse models. Huntingtin aggregates in mitochondria support mitochondrial dysfunction as contributing to the disease pathogenesis. Dark cell degeneration was reminiscent of results in HD individuals and HD mouse models. Interestingly, huntingtin aggregates were especially well accumulated in two interacting limbic forebrain systems, the ventral striatopallidum and the extended amygdala, which may contribute to the early onset of emotional changes observed in the tgHD rat. In conclusion, the tgHD rat model reflects to a remarkable extent the cellular and subcellular neuropathological key features as observed in human HD and HD mouse brains and hints of changes in limbic forebrain systems, which may elucidate the emotional dysfunction in the tgHD rat and affective disturbances in HD patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available