4.5 Article

Genome dynamics and transcriptional deregulation in aging

Journal

NEUROSCIENCE
Volume 145, Issue 4, Pages 1341-1347

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2006.09.060

Keywords

single cell; cell-to-cell variation; genome instability; somatic mutations; gene regulation

Categories

Funding

  1. NIA NIH HHS [R01 AG020438, P01 AG017242] Funding Source: Medline

Ask authors/readers for more resources

Genome instability has been implicated as a major cause of both cancer and aging. Using a lacZ-plasmid transgenic mouse model we have shown that mutations accumulate with age in a tissue-specific manner. Genome rearrangements, including translocations and large deletions, are a major component of the mutation spectrum in some tissues at old age such as heart. Such large mutations were also induced by hydrogen peroxide (H2O2) in lacZ-plasmid mouse embryonic fibroblasts (MEFs) and demonstrated to be replication-in dependent. This was in contrast to ultraviolet light-induced point mutations, which were much more abundant in proliferating than in quiescent MEFs. To test if large rearrangements could adversely affect patterns of gene expression we PCR-amplified global mRNA content of single MEFs treated with H2O2. Such treatment resulted in a significant increase in cell-to-cell variation in gene expression, which was found to parallel the induction and persistence of genome rearrangement mutations at the lacZ reporter locus. Increased transcriptional noise was also found among single cardiomyocytes from old mice as compared with similar cells from young mice. While these results do not directly indicate a cause and effect relationship between genome rearrangement mutations and transcriptional deregulation, they do underscore the stochastic nature of genotoxic effects on cells and tissues and could provide a mechanism for age-related cellular degeneration in postmitotic tissue, such as heart or brain. (C) 2006 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available