4.8 Article Proceedings Paper

A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell

Journal

BIOSENSORS & BIOELECTRONICS
Volume 22, Issue 9-10, Pages 2250-2255

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2006.11.004

Keywords

glucose dehydrogenase; continuous glucose monitoring; bio-fuel cell; glucose sensor; direct electron transfer

Ask authors/readers for more resources

In this paper we present a novel wireless glucose biosensing system employing direct electron transfer principle based enzyme fuel cell. Using the glucose dehydrogenase complex, which is composed of a catalytic subunit containing FAD, the cytochrome c subunit that harbors heme c as the electron transfer subunit, and chaperone-like subunit, a direct electron transfer-type glucose enzyme fuel cell was constructed. The enzyme glucose fuel cell generated electric power, and the open-circuit voltage showed glucose concentration dependence, which suggests potential applications for this glucose-sensing system. We constructed a miniaturized all-in-one glucose enzyme fuel cell, which represents a compartmentless fuel that is based on the direct electron transfer principle. This involved the combination of a wireless transmitter system and a simple and miniaturized continuous glucose monitoring system, which operated continuously for about 3 days with stable response. This is the first demonstration of an enzyme-based direct electron transfer-type enzyme fuel cell and fuel cell-type glucose sensor which can be utilized as a subcutaneously implantable system for continuous glucose monitoring. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available