4.7 Article Proceedings Paper

Photochemical control of network structure in gels and photo-induced changes in their viscoelastic properties

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 56, Issue 1-2, Pages 285-289

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2007.01.020

Keywords

polymer gels; azobenzene; photochemical control; viscoelasticity; topological constraints

Ask authors/readers for more resources

Poly(amide acid) gels containing photosensitive azobenzene groups in the main chain have been synthesized and their viscoelastic properties before and after light irradiation have been investigated by dynamic viscoelasticity measurements. It was found that 405 nm light induced a local volume change and a two-fold increase in the storage modulus of the gels. We discuss the change in storage modulus upon light irradiation quite simply in terms of classical rubber elasticity theory, which cannot explain this large increase in storage modulus. The photo-induced increase in storage modulus may result from an increase in entanglement interactions of topological constraints fixed in the network structure, caused by photoisomerization of the azobenzene moieties. We suggest that topological constraints in the network structure of the gels were realized by light irradiation and calculate the resulting slip link ratio (index of the topological constraints) in the gel network. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available