4.8 Article

GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis

Journal

CANCER RESEARCH
Volume 67, Issue 8, Pages 3734-3740

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-06-4594

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA 111700] Funding Source: Medline

Ask authors/readers for more resources

The recent development of hormonal therapy that blocks estrogen synthesis represents a major advance in the treatment of estrogen receptor-positive breast cancer. However, cancer cells often acquire adaptations resulting in resistance. A recent report reveals that estrogen starvation-induced apoptosis of breast cancer cells requires BIK, an apoptotic BH3-only protein located primarily at the endoplasmic reticulum (ER). Searching for novel partners that interact with BIK at the ER, we discovered that BIK selectively forms complex with the glucose-regulated protein GRP78/BiP, a major ER chaperone with prosurvival properties naturally induced in the tumor microenvironment. GRP78 overexpression decreases apoptosis of 293T cells induced by ER-targeted BIK. For estrogen-dependent MCF-7/BUS breast cancer cells' overexpression of GRP78 inhibits estrogen starvation-induced BAX activation, mitochondrial permeability transition, and consequent apoptosis. Further, knockdown of endogenous GRP78 by small interfering RNA (siRNA) sensitizes MCF-7/BUS cells to estrogen starvation-induced apoptosis. This effect was substantially reduced when the expression of BIK was also reduced by siRNA. Our results provide the first evidence that GRP78 confers resistance to estrogen starvation-induced apoptosis in human breast cancer cells via a novel mechanism mediated by BIK. These results further suggest that GRP78 expression level in the tumor cells may serve as a prognostic marker for responsiveness to hormonal therapy based on estrogen starvation and that combination therapy targeting GRP78 may enhance efficacy and reduce resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available