4.7 Article

Isotope quantum effects in the electron momentum density of water

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2723093

Keywords

-

Ask authors/readers for more resources

The isotope quantum effects in the ground-state electron momentum density of water are studied at temperatures ranging from 5 to 90 degrees C by combining Compton scattering experiments utilizing synchrotron radiation and computational analysis within density functional theory. We observe clear differences in the momentum density between normal and heavy water at room temperature, which are interpreted as predominantly reflecting intramolecular structural differences. The changes in the momentum density upon increasing the temperature are found to be larger for heavy than for normal water, which is attributed primarily to temperature-induced intramolecular structural effects. Both model computations and an ab initio approach qualitatively reproduce the changes in the momentum density as a function of temperature. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available