4.7 Article

Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes:: Performances of different exchange-correlation functionals

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2717168

Keywords

-

Ask authors/readers for more resources

The two polymorphs of TiO2, rutile and anatase, have been investigated at the ab initio level using different Hamiltonians with all-electron Gaussian and projector augmented plane wave basis sets. Their equilibrium lattice parameters, relative stabilities, binding energies, and band structures have been evaluated. The calculations have been performed at the Hartree-Fock, density functional theory (DFT), and hybrid (B3LYP and PBE0) levels. As regards DFT, the local density and generalized gradient (PBE) approximations have been used. Our results show an excellent agreement with the experimental band structures and binding energies for the B3LYP and PBE0 functionals, while the best structural descriptions are obtained at the PBE0 level. However, no matter which Hamiltonian and method are used, anatase is found more stable than rutile, in contrast with recent experimental reports, although the relative stabilities of the two phases are very close to each other. Nevertheless, based on the overall results, the hybrid PBE0 functional appears as a good compromise to obtain an accurate description of both structural and electronic properties of solids. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available