4.7 Article

Spectroscopic characterization of carbon chains in nanostructured tetrahedral carbon films synthesized by femtosecond pulsed laser deposition

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2727450

Keywords

-

Ask authors/readers for more resources

A comparative study of carbon bonding states and Raman spectra is reported for amorphous diamondlike carbon films deposited using 120 fs and 30 ns pulsed laser ablation of graphite. The presence of sp(1) chains in femtosecond carbon films is confirmed by the appearance of a broad excitation band at 2000-2200 cm(-1) in UV-Raman spectra. Analysis of Raman spectra indicates that the concentrations of sp(1)-, sp(2)-, and sp(3)-bonded carbon are approximate to 6%, approximate to 43%, and approximate to 51%, respectively, in carbon films prepared by femtosecond laser ablation. Using surface enhanced Raman spectroscopy, specific vibrational frequencies associated with polycumulene, polyyne, and trans-polyacetylene chains have been identified. The present study provides further insight into the composition and structure of tetrahedral carbon films containing both sp(2) clusters and sp(1) chains. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available