4.7 Article

Impacts of stereoregularity and stereocomplex formation on physicochemical, protein adsorption and cell adhesion behaviors of star-shaped 8-arms poly(ethylene glycol)-poly(lactide) block copolymer films

Journal

POLYMER
Volume 48, Issue 9, Pages 2649-2658

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2007.03.017

Keywords

stereocomplex; polylactide; 8-arms poly(ethylene glycol)

Ask authors/readers for more resources

Biodegradable stereocomplex film exhibiting soft and stretchy character was prepared by simply blending between enantiomeric 8-arms poly(ethylene glycol)-block-poly(L-lactide) (8-arms PEG-b-PLLA) and 8-arms PEG-b-PDLA copolymers with star-shaped structure. The stereocomplex film exhibited higher T-g and PLA crystallinity than those of original copolymer films. Effects of stereoregularity and stereocomplexation on protein adsorption and L929 cells attachment/proliferation behaviors onto the films were analyzed from the viewpoint to design a new class of implantable soft biomaterial. The stereocomplex film was found to exhibit large amount of protein adsorption than original films. Furthermore, cell attachment efficiency and proliferation rate on the film were significantly enhanced by stereocomplexation. This stereocomplex material is expected to be applicable as degradable temporary scaffold for soft tissue regeneration. Consequently, it was indicated that the stereocomplex formation could be proposed to be a novel method to control the protein- and cell-adhesive properties of biodegradable matrix composed of PEG-PLA copolymer. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available