4.6 Article

Highly effective contact antimicrobial surfaces via polymer surface modifiers

Journal

LANGMUIR
Volume 23, Issue 9, Pages 4719-4723

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la063718m

Keywords

-

Ask authors/readers for more resources

Contact antimicrobial coatings with poly(alkylammonium) compositions have been a subject of increasing interest in part because of the contribution of biocide release coatings to antibiotic resistance. Herein, a concept for antimicrobial coatings is developed on the basis of the thermodynamically driven surface concentration of soft block side chains. The concept incorporates structural and compositional guidance from naturally occurring antimicrobial proteins and achieves compositional economy via a polymer-surface modifier (PSM). To implement this concept, polyurethanes were prepared having random copolymer 1,3-propylene oxide soft blocks with alkylammonium and either trifluoroethoxy or PEGlyted side chains. Six carbon (C6) and twelve carbon (C12) alkylammonium chain lengths were used. The PSMs were first tested as 100% coatings and were highly effective against aerosol challenges of Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli). To evaluate the surface concentration, solutions containing 2 wt % PSM with a conventional polyurethane were evaporatively coated onto glass slides. These 2% PSM coatings were tested against aerosol challenges of Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria (10(7) CFU/mL/30 min). A copolymer soft block containing trifluorethoxy (89 mol %) and C-12 alkylammonium (11 mol %) side chains gave the highest biocidal effectiveness in 30 min: 2 wt %, Gram(+/-) bacteria, 100% kill, and 3.6-4.4 log reduction. A zone of inhibition test showed no biocide release for PSMs and PSM-modified compositions. Characteristics that contribute to concept validation include good hard block/soft block phase separation, a cation/co-repeat group ratio mimicking natural biocidal proteins, a semifluorinated chaperone aiding in alkylammonium surface concentration, and a low T-g for the alkylammonium soft block.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available