4.7 Article

Polymorphisms in the human soluble epoxide hydrolase gene EPHX2 linked to neuronal survival after ischemic injury

Journal

JOURNAL OF NEUROSCIENCE
Volume 27, Issue 17, Pages 4642-4649

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0056-07.2007

Keywords

EETs; neuroprotection; stroke; ischemia; eicosanoids; protein transduction domain; P450 epoxygenase

Categories

Funding

  1. NIEHS NIH HHS [ES011630] Funding Source: Medline
  2. NIGMS NIH HHS [GM56708] Funding Source: Medline
  3. NINDS NIH HHS [NS44313, NS049210, R01 NS044313] Funding Source: Medline

Ask authors/readers for more resources

Single nucleotide polymorphisms (SNPs) in the human EPHX2 gene have recently been implicated in susceptibility to cardiovascular disease, including stroke. EPHX2 encodes for soluble epoxide hydrolase (sEH), an important enzyme in the metabolic breakdown of arachidonic acid-derived eicosanoids referred to as epoxyeicosatrienoic acids (EETs). We previously demonstrated that EETs are protective against ischemic cell death in culture. Therefore, we tested the hypothesis that polymorphisms in the human EPHX2 gene alter sEH enzyme activity and affect neuronal survival after ischemic injury in vitro. Human EPHX2 mutants were recreated by site-directed mutagenesis and fused downstream of TAT protein transduction domain. Western blot analysis and immunocytochemistry staining revealed high-transduction efficiency of human TAT-sEH variants in rat primary cultured cortical neurons, associated with increased metabolism of 14,15-EET to corresponding 14,15-dihydroxyeicosatrienoic acid. A human variant of sEH with Arg103Cys amino acid substitution, previously demonstrated to increase sEH enzymatic activity, was associated with increased cell death induced in cortical neurons by oxygen-glucose deprivation (OGD) and reoxygenation. In contrast, the Arg287Gln mutation was associated with reduced sEH activity and protection from OGD-induced neuronal cell death. We conclude that sequence variations in the human EPHX2 gene alter susceptibility to ischemic injury and neuronal survival in a manner linked to changes in the hydrolase activity of the enzyme. The findings suggest that human EPHX2 mutations may in part explain the genetic variability in sensitivity to ischemic brain injury and stroke outcome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available