4.7 Article

A statistical quasiclassical trajectory model for atom-diatom insertion reactions

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2723067

Keywords

-

Ask authors/readers for more resources

A statistical model based on the quasiclassical trajectory method is presented in this work for atom-diatom insertion reactions. The basic difference between this and the corresponding statistical quantum model (SQM) lies in the fact that trajectories instead of wave functions are propagated in the entrance and exit channels. Other than this the two formulations are entirely similar. In particular, it is shown that conservation of parity can be taken into account in a natural and precise way in the statistical quasiclassical trajectory (SQCT) model. Additionally, the SQCT model complies with the principle of detailed balance and overcomes the problem of the zero point energy in the products. As a test, the model is applied to the H-3(+) and H+D2 exchange reactions. The excellent agreement between the SQCT and SQM results, especially in the case of the differential cross sections, indicates that the effect of tunneling through the centrifugal barrier is negligible. The effect of ignoring quantum mechanical parity conservation is also investigated. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available