4.7 Article

Modeling the hydrological impact of land-use change in West Africa

Journal

JOURNAL OF HYDROLOGY
Volume 337, Issue 3-4, Pages 258-268

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2007.01.038

Keywords

sahel; runoff; discharge; model studies; vegetation

Ask authors/readers for more resources

Numerical simulations of idealized deforestation and overgrazing are performed for the Niger and Lake Chad basins of West Africa with a terrestrial ecosystem model IBIS (integrated biosphere simulator) and an aquatic transport model THMB (terrestrial hydrology model with biogeochemistry). The study reveals how land use changes affect hydrological regimes at the watershed scale. The results show that tropical forests, due to being situated in the regions of highest rainfall and exerting strong influence on evapotranspiration, have a disproportionately large impact on the water balance of the entire basin. Total deforestation (clearcutting) increases the simulated runoff ratio from 0.15 to 0.44, and the annual streamflow by 35-65%, depending on location in the basin, although forests occupy only a small portion (< 5%) of the total basin area. Complete removal of grassland and savanna, which occupy much greater areas of the basins, result in an increase in simulated annual streamflow by 33-91%. The numerical simulations indicate that the hydrological response to progressive land cover change is non-linear and exhibits a threshold effect. There is no significant impact on the water yield and river discharge when the deforestation (thinning) percentage is below 50% or the overgrazing percentage below 70% for savanna and 80% for grassland areas; however, the water yield is increased dramatically when land cover change exceeds these thresholds. This threshold effect is a combined result of the non-linearity of the separate response of transpiration and soil and canopy evaporation to the imposed land cover changes. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available