4.6 Article

Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution

Journal

APPLIED PHYSICS LETTERS
Volume 90, Issue 18, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2735674

Keywords

-

Ask authors/readers for more resources

Solution-processed thin-film organic, inorganic, and hybrid photovoltaic devices have achieved power conversion efficiencies as high as 5%. However, these devices remain limited by their capture of visible energy; more than a half of the sun's power lies in the infrared. Herein the authors demonstrate photovoltaic devices effective across the visible and all the way out to 1700 nm. Only through the use of ethanedithiol as a bridging molecule to affect interparticle linking were they able to achieve fabrication of smooth, continuous quantum dot films on rough, high-surface area transparent metal oxides. This allowed them to increase light absorption while maintaining efficient charge separation and extraction and at the same time avoiding electrical short circuits. They obtained monochromatic infrared power conversion efficiencies of 1.3%, a 50-fold gain over the previous published record of 0.025% in IR solution-processed photovoltaics. The authors demonstrate quantum size-effect tuning of device band gaps relevant to multijunction solar cells. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available