4.5 Article

Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo

Journal

JOURNAL OF BIOMEDICAL OPTICS
Volume 12, Issue 3, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2737351

Keywords

metal nanoparticles; epidermal growth factor receptor (EGER); optical imaging; early detection; plasmon coupling

Funding

  1. NCI NIH HHS [R01-CA103830] Funding Source: Medline

Ask authors/readers for more resources

An effective cancer control strategy requires improved early detection methods, patient-specific drug selection, and the ability to assess response to targeted therapeutics. Recently, plasmon resonance coupling between closely spaced metal nanoparticles has been used to develop ultrasensitive bioanalytical assays in vitro. We demonstrate the first in vivo application of plasmon coupling for molecular imaging of carcinogenesis. We describe molecular-specific gold bioconjugates to image epidermal growth factor receptor (EGFR); these conjugates can be delivered topically and imaged noninvasively in real time. We show that labeling with gold bioconjugates gives information on the overexpression and nanoscale spatial relationship of EGF receptors in cell membranes, both of which are altered in neoplasia. EGFR-mediated aggregation of gold nanoparticles in neoplastic cells results in more than a 100-nm color shift and a contrast ratio of more than tenfold in images of normal and precancerous epithelium in vivo, dramatically increasing contrast beyond values reported previously for antibody-targeted fluorescent dyes. (C) 2007 Society of Photo-Optical Instrumentation Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available