4.7 Article

Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks

Journal

ADVANCES IN WATER RESOURCES
Volume 30, Issue 5, Pages 1329-1341

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.advwatres.2006.11.011

Keywords

stochastic optimization; reservoir operation; water quality; intelligent system; stochastic fuzzy neural network; evolving neural networks

Ask authors/readers for more resources

By taking advantage of the close relationship between quality and quantity of water, we investigated the potential improvements of the in-reservoir water quality through the optimization of reservoir operational strategies. However, the few available techniques for optimization of reservoir operational strategies present some limitations, such as restrictions on the number of state/decision variables, the impossibility considering stochastic characteristics and difficulties for considering simulation/prediction models. One technique which presents great potential for overcoming some of these limitations is applied here and investigated for the first time in such complex system. The method, named stochastic fuzzy neural network (SFNN), can be defined as a fuzzy neural network (FNN) model stochastically trained by a genetic algorithm (GA) based model to yield a quasi optimal solution. The term stochastically trained refers to the introduction of a new loop within the training process which accounts for the stochastic variable of the system and its probabilities of occurrence. The SFNN was successfully applied to the optimization of the monthly operational strategies considering maximum water utilization and improvements on water quality simultaneous. Results showed the potential improvements on the water quality through means of hydraulic control. (C) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available