4.7 Article

Kernel-based distance metric learning for content-based image retrieval

Journal

IMAGE AND VISION COMPUTING
Volume 25, Issue 5, Pages 695-703

Publisher

ELSEVIER
DOI: 10.1016/j.imavis.2006.05.013

Keywords

metric learning; kernel method; content-based image retrieval; relevance feedback

Ask authors/readers for more resources

For a specific set of features chosen for representing images, the performance of a content-based image retrieval (CBIR) system depends critically on the similarity or dissimilarity measure used. Instead of manually choosing a distance function in advance, a more promising approach is to learn a good distance function from data automatically. In this paper, we propose a kernel approach to improve the retrieval performance of CBIR systems by learning a distance metric based on pairwise constraints between images as supervisory information. Unlike most existing metric learning methods which learn a Mahalanobis metric corresponding to performing linear transformation in the original image space, we define the transformation in the kernel-induced feature space which is nonlinearly related to the image space. Experiments performed on two real-world image databases show that our method not only improves the retrieval performance of Euclidean distance without distance learning, but it also outperforms other distance learning methods significantly due to its higher flexibility in metric learning. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available