4.5 Article

Disturbance of spin equilibrium by current through the interface of noncollinear ferromagnets

Journal

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume 312, Issue 1, Pages 200-204

Publisher

ELSEVIER
DOI: 10.1016/j.jmmm.2006.09.029

Keywords

spin injection; magnetic junctions; boundary conditions; chemical potential continuity; contact potential difference

Ask authors/readers for more resources

Boundary conditions are derived that determine the penetration of spin current through an interface of two noncollinear ferromagnets with an arbitrary angle between their magnetization vectors. We start from the well-known transformation properties of an electron spin wave functions under the rotation of a quantization axis. It allows directly find the connection between partial electric current densities for different spin subbands of the ferromagnets. No spin scattering is assumed in the near interface region, so that spin conservation takes place when electron intersects the boundary. The continuity conditions are found for partial chemical potential differences in the situation. Spatial distribution of nonequilibrium electron magnetizations is calculated under the spin current flowing through a contact of two semi-infinite ferromagnets. The distribution describes the spin accumulation effect by current and corresponding shift of the potential drop at the interface. These effects appear strongly dependent on the relation between spin contact resistances at the interface. (C) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available