4.6 Article

Cotunneling and nonequilibrium magnetization in magnetic molecular monolayers

Journal

PHYSICAL REVIEW B
Volume 75, Issue 19, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.195341

Keywords

-

Ask authors/readers for more resources

Transport and nonequilibrium magnetization in monolayers of magnetic molecules subject to a bias voltage are considered. We apply a master-equation approach going beyond the sequential-tunneling approximation to study the Coulomb-blockade regime. While the current is very small in this case, the magnetization shows changes of the order of the saturation magnetization for small variations of the bias voltage. Inelastic cotunneling processes manifest themselves as differential-conductance steps, which are accompanied by much larger changes in the magnetization. In addition, the magnetization in the Coulomb-blockade regime exhibits strong signatures of sequential tunneling processes deexciting molecular states populated by inelastic cotunneling. We also consider the case of a single molecule, finding that cotunneling processes lead to the occurrence of magnetic sidebands below the Coulomb-blockade threshold. In the context of molecular electronics, we study how additional spin relaxation suppresses the fine structure in transport and magnetization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available