4.5 Article

A model for predicting magnetic targeting of multifunctional particles in the microvasculature

Journal

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume 312, Issue 1, Pages 187-193

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmmm.2006.09.026

Keywords

magnetic drug targeting; magnetic drug delivery; multifunctional nanoparticles; magnetic particle capture; nanoparticle transport in microvasculature; therapeutic nanoparticles; noninvasive drug targeting

Ask authors/readers for more resources

A mathematical model is presented for predicting magnetic targeting of multifunctional carrier particles that are designed to deliver therapeutic agents to malignant tissue in vivo. These particles consist of a nonmagnetic core material that contains embedded magnetic nanoparticles and therapeutic agents such as photodynamic sensitizers. For in vivo therapy, the particles are injected into the vascular system upstream from malignant tissue, and captured at the tumor using an applied magnetic field. The applied field couples to the magnetic nanoparticles inside the carrier particle and produces a force that attracts the particle to the tumor. In noninvasive therapy, the applied field is produced by a permanent magnet positioned outside the body. In this paper, a mathematical model is developed for predicting noninvasive magnetic targeting of therapeutic carrier particles in the microvasculature. The model takes into account the dominant magnetic and fluidic forces on the particles and leads to an analytical expression for predicting their trajectory. An analytical expression is also derived for predicting the volume fraction of embedded magnetic nanoparticles required to ensure capture of the carrier particle at the tumor. The model enables rapid parametric analysis of magnetic targeting as a function of key variables including the size of the carrier particle, the properties and volume fraction of the embedded magnetic nanoparticles, the properties of the magnet, the microvessel, the hematocrit of the blood and its flow rate. (C) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available