4.7 Article

Deformed special relativity and deformed symmetries in a canonical framework

Journal

PHYSICAL REVIEW D
Volume 75, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.75.105021

Keywords

-

Ask authors/readers for more resources

In this paper we have studied the nature of kinematical and dynamical laws in kappa-Minkowski spacetime from a new perspective: the canonical phase space approach. We discuss a particular form of kappa-Minkowski phase space algebra that yields the kappa-extended finite Lorentz transformations derived in [D. Kimberly, J. Magueijo, and J. Medeiros, Phys. Rev. D 70, 084007 (2004).]. This is a particular form of a deformed special relativity model that admits a modified energy-momentum dispersion law as well as noncommutative kappa-Minkowski phase space. We show that this system can be completely mapped to a set of phase space variables that obey canonical (and not kappa-Minkowski) phase space algebra and special relativity Lorentz transformation (and not kappa-extended Lorentz transformation). The complete set of deformed symmetry generators are constructed that obeys an unmodified closed algebra but induce deformations in the symmetry transformations of the physical kappa-Minkowski phase space variables. Furthermore, we demonstrate the usefulness and simplicity of this approach through a number of phenomenological applications both in classical and quantum mechanics. We also construct a Lagrangian for the kappa-particle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available