4.5 Article

Ultrathin carbon nanoparticle composite film electrodes: Distinguishing dopamine and ascorbate

Journal

ELECTROANALYSIS
Volume 19, Issue 10, Pages 1032-1038

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/elan.200703825

Keywords

electrostatic binding; carbon nanoparticle; voltammetry; sensor; ascorbic acid; dopamine

Ask authors/readers for more resources

Ultrathin carbon nanoparticle-poly(diallyldimethylammonium chloride) films (CNP-PDDAC films) are formed on tin-doped indium oxide (ITO) electrodes in a layer-by-layer electrostatic deposition process employing 9-18 nm diameter carbon particles. Transparent and strongly adhering films of high electrical conductivity are formed and characterized in terms of their electrochemical reactivity. When immersed in aqueous 0.1 M phosphate buffer pH 7, each layer of CNP-PDDAC (of ca. 5 - 6 nm average thickness) is adding an interfacial capacitance of ca. 10 mu F cm(-2). Absorption into the CNP-PDDAC nanocomposite film is dominated by the sites in the PDDAC cationomer and therefore anionic molecules such as indigo carmine are strongly bound and retained within the film (cationic binding sites per layer ca. 150 pmol cm(-2)). In contrast, cationic redox systems such as ferrocenylmethyltrimethyl-ammonium(+) fail to bind. For solution phase redox systems such as hydroquinone, the rate of electron transfer is dramatically affected by the CNP-PDDAC film and switched from completely irreversible to highly reversible even with a single layer of carbon nanoparticles. For the mixed redox system ascorbate - dopamine in 0.1 M phosphate buffer pH 7 cyclic voltammograms suggest a rapid and selective temporary poisoning process which causes the ascorbate oxidation to be suppressed in the second potential cycle. This effect is exploited for the detection of micromolar concentrations of dopamine in the presence of millimolar ascorbate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available