4.6 Article

A comparative study of shape representation in macaque visual areas V2 and V4

Journal

CEREBRAL CORTEX
Volume 17, Issue 5, Pages 1100-1116

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhl020

Keywords

contours; extrastriate cortex; hierarchical processing; non-Cartesian gratings; receiver operating characteristic (ROC) analysis

Categories

Funding

  1. NEI NIH HHS [EY02091] Funding Source: Medline

Ask authors/readers for more resources

We compared aspects of shape representation in extrastriate visual areas V2 and V4, which are both implicated in shape processing and belong to different hierarchical levels. We recorded responses of cells in awake, fixating monkeys to matched sets of contour and grating stimuli of low or intermediate complexity. These included simple stimuli (bars and sinusoids) and more complex stimuli (angles, intersections, arcs, and non-Cartesian gratings), all scaled to receptive field size. The responses of cells within each area were substantially modulated by each shape characteristic tested, with substantial overlap between areas by many response measures. Our analyses revealed many clear and reliable differences between areas in terms of the effectiveness of, and response modulation by, various shape characteristics. Grating stimuli were on average more effective than contour stimuli in V2 and V4, but the difference was more pronounced in V4. As a population, V4 showed greater response modulation by some shape characteristics (including simple shape characteristics) and V2 showed greater response modulation by many others (including complex shape characteristics). Recordings from area V1 demonstrated complex shape selectivity in some cells and relatively modest population differences in comparison with V2. Altogether, the representation of 2-dimensional shape characteristics revealed by this analysis varies substantially among the 3 areas. But surprisingly, the differences revealed by our analyses, individually or collectively, do not parallel the stepwise organization of the anatomical hierarchy. Commonalities of visual shape representation across hierarchical levels may reflect the replication of neural circuits used in generating complex shape representations at multiple spatial scales.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available